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EFFECT OF SCATTERING OF ELASTIC HARMONIC WAVES

IN THE FAR ZONE BY A SPATIAL CRACK

UDC 539.3V. V. Mykhas’kiv,1 N. D. Grilitskii,2 and I. O. Butrak1

A three-dimensional wave field formed owing to diffraction of low-frequency waves on a curved crack
in an infinite elastic solid at a large distance from the defect is studied by the method of boundary
integral equations. Direction diagrams of the scattered field versus the excentricity of the crack surface
and wavenumber are obtained for different directions of incidence of planar longitudinal waves onto
a gently sloping spheroidal crack.

Key words: elastic solid, spatial crack, harmonic wave, scattered field, direction diagram, method
of boundary integral equations.

Introduction. In solving problems of seismic science, diagnostics, and nondestructive evaluation, much
attention is paid to studying the interaction of elastic waves with defects, such as cracks, which have a sophisticated
geometry in reality. The defect topology significantly affects the wave pattern both in the vicinity of the scatterer
and far from the latter. An analysis of the near zone, in particular, dynamic coefficients of stress intensity in
three-dimensional solids with cracks of various configurations was performed in [1–7] by the method of boundary
integral equations (BIE). In the present paper, this method is used to study the far elastic wave field on the basis
of dependences between its amplitude–frequency characteristics and the boundary functions of opening of a defect
of an arbitrary shape (BIE solutions). It should be noted that a similar approach was used previously to solve
three-dimensional problems of diffraction of acoustic and electromagnetic waves on curved surfaces [8, 9] and of
elastic waves on planar cracks without [10, 11] and with [12, 13] allowance for their interaction.

Formulation of the Problem in the Form of Integral Equations and Relations. Let an elastic
harmonic wave propagate in an infinite elastic solid with a crack aligned with an arbitrary smooth surface S. The
components of displacements and corresponding stresses are

uint
j (x, t) = uint

j (x) exp (−iωt) (j = 1, 3),

σint
jr (x, t) = σint

jr (x) exp (−iωt) (j, r = 1, 3),
(1)

where x(x1, x2, x3) is the radius vector of the point of the solid, t is the time, i =
√−1, uint

j (x) and σint
jr (x)

(j, r = 1, 3 ) are the amplitudes of displacements and stresses of the incident wave, respectively, and ω is the cyclic
frequency. The crack surfaces are free from forces (Fig. 1).

In a steady process, the exponential time factor in Eq. (1) can be omitted. Then, the diffraction field of
displacements u∗j in the solid induced by wave–crack interaction can be presented as the superposition [4]

u∗j(x) = uint
j (x) + uj(x), j = 1, 3, (2)
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Fig. 1. Geometry of the problem.

where u(u1, u2, u3) are the unknown displacements of the wave reflected from the defect, which satisfy the conditions
of emission at infinity and the diffraction equations of motion in the case of steady oscillations:

ω−2
1 ∇(∇ · u) − ω−2

2 ∇× (∇× u) + u = 0, (3)

ωj = ω/cj (j = 1, 2) are the wavenumbers, c1 and c2 are the velocities of propagation of longitudinal and transverse
waves, respectively, and ∇ is a three-dimensional nabla-operator.

The potential theory being used, the solution of problem (1)–(3) is reduced to the solution of the following
system of three BIEs with respect to the jumps of displacements of the opposite surfaces of the crack ∆uj (j = 1, 3 )
in the direction of the coordinate axes [14]:

3∑

r=1

∫ ∫

S

∆ur(ξ, ω)Ωjr(x, ξ, ω) dSξ = − 1
4G

3∑

r=1

σint
jr (x, ω)nrx, j = 1, 3, x ∈ S. (4)

Here the right sides describe the forces (with the opposite sign) caused by the incident wave in the region of the
defect, the kernels Ωjr have a singularity of the Helmholtz potential

Ωjr(x, ξ, ω) =
(1 − 2γ2

2

3∑

m=1

3∑

p=1

(δjmnpxnrξ + δrmnjxnpξ)
∂2

∂xm ∂xp

− (1 − 2γ2)2

4
ω2

2njxnrξ

)exp (iω1|x − ξ|)
|x − ξ| +

1
4

3∑

m=1

3∑

p=1

[
δjrnpxnmξ + δjpnrxnmξ

+ δrmnpxnjξ + δmjδpr(nx · nξ)
] ∂2

∂xm ∂xp

(exp (iω2|x − ξ|)
|x − ξ|

)

+
1
ω2

2

∂2

∂xj ∂xr

3∑

m=1

3∑

p=1

nmxnpξ
∂2

∂xm ∂xp

(exp (iω2|x − ξ|) − exp (iω1|x − ξ|)
|x − ξ|

)
,

G is the shear modulus, γ = c2/c1 =
√

(1 − 2ν)/(2(1 − ν)), ν is Poisson’s ratio, δjr is the Kronecker symbol,
|x− ξ| is the distance between the point of the field x(x1, x2, x3) and the point of integration ξ(ξ1, ξ2, ξ3), and npx
and npξ (p = 1, 3 ) are the projections of the normal to the surface S at these points.
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At large distances from the crack |x| � |ξ| (ξ ∈ S), asymptotic presentations of displacements of the scattered
waves are valid [7], which are written in the following form in the spherical coordinate system x1 = R sinϕ cosψ,
x2 = R sinϕ sinψ, x3 = R cosϕ:

uR(R,ϕ, ψ) =
exp (iω1R)

R
FP (ϕ, ψ), R → ∞,

uϕ(R,ϕ, ψ) =
exp (iω2R)

R
FSV (ϕ, ψ), R → ∞, (5)

uψ(R,ϕ, ψ) =
exp (iω2R)

R
FSH(ϕ, ψ), R → ∞.

In formulas (5), the amplitudes of the planar longitudinal wave FP and those of vertically (FSV ) and
horizontally (FSH) polarized planar transverse waves have an integral dependence on the functions ∆uj (j = 1, 3 ):

FP (ϕ, ψ) = iω1

3∑

j=1

3∑

s=1

[
2γ2x̃j x̃s + (1 − 2γ2)δjs

] ∫ ∫

S

exp (−iω1(x̃ · ξ))∆uj(ξ)nsξ dSξ,

FSV (ϕ, ψ) = iω2

3∑

j=1

3∑

s=1

[
ṽj x̃s + ṽsx̃j ]

∫ ∫

S

exp (−iω2(x̃ · ξ))∆uj(ξ)nsξ dSξ, (6)

FSH(ϕ, ψ) = iω2

3∑

j=1

3∑

s=1

[
h̃j x̃s + h̃sx̃j ]

∫ ∫

S

exp (−iω2(x̃ · ξ))∆uj(ξ)nsξ dSξ.

Here x̃, ṽ, and h̃ are the unit vectors:

x̃ =

⎡

⎣
sinϕ cosψ
sinϕ sinψ

cosϕ

⎤

⎦ , ṽ =

⎡

⎣
cosϕ cosψ
cosϕ sinψ
− sinϕ

⎤

⎦ , h̃ =

⎡

⎣
− sinψ
cosψ

0

⎤

⎦ .

Thus, the solution of the problem of wave scattering in the far zone by a spatial crack reduces to determining
the functions of dynamic opening of the defect in BIEs (4) with their subsequent substitution into the integral
relations (6).

Construction of the Solution in the Long-Wave Approximation for a Gently Sloping Crack. To
obtain a particular solution of the problem, we consider an elastic solid with a spheroidal crack with the surface
x3 = F (x1, x2) = b

(√
1 − (x2

1 + x2
2)/c2 − 1

)
in the coordinate system whose origin is located at the defect apex

(b and c are the semi-axes of the ellipsoid of revolution; b � c). The crack contour is formed by the line of intersection
of the ellipsoid of revolution with a plane parallel to the coordinate plane x1Ox2; this is a circle of radius a (see
Fig. 1). The geometric parameters of the crack are chosen from the condition that the crack is gently sloping,
i.e., the angle between the normals at arbitrary points of the surface S should not be greater than π/4. A planar
longitudinal wave in the direction of the orth p(p1, p2, p3) is incident onto the crack. The stress components of the
wave are

σint
jr (x, ω) = P0[2γ2prpj + (1 − 2γ2)δjr] exp (iω1(p · x)), j, r = 1, 3,

where P0 is a constant corresponding to the amplitude of normal forces in the planes parallel to the wave front.
The assumptions made on the gentle slope of the crack and on the character of the steady excitation allow

us to solve BIEs (4) by the method of the small parameter on the basis of the presentations

exp (iωjr) =
∞∑

k=0

(iωjr)k

k!
, j = 1, 2, r = |x − ξ| or r = p · x,

F (x1, x2) = −
∞∑

q=0

(2q − 3)!!
2q!!

(x2
1 + x2

2

a2

)q
ε2q, (x1, x2) ∈ S0,

(7)
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where ε = a/c < 1 is the geometric parameter and S0 is the circular region of radius a, which is the projection of
the region S onto the coordinate plane x1Ox2.

Presentations (7) allow us to expand the kernels and the right sides of BIEs (4) into converging double series
in terms of the frequency and geometric parameters. Using similar expansions for the sought functions in the form

∆uj(x, ω) =
∞∑

q=0

∞∑

k=0

∆u(k,q)
j (x1, x2)(iω2)kεq (j = 1, 3) (8)

and equating expressions with identical orders of the small parameters in the right and left sides of Eqs. (4), we
find integral equations, which are recurrent with respect to the superscripts k and q, over a planar region S0 with
a static (Newton) kernel for determining the functions ∆u(k,q)

j (j = 1, 3; k, q = 0,∞ ). These equations admit an
analytical solution on the basis of the theorem about their polynomial persistence [15]. In particular, if the direction
of the generating wave coincides with the direction of the orth p = p(0, 0,−1) (direction I) or with the direction
of the orth p = p(0, 0, 1) (direction II), the approximate solutions of BIEs (4) with retained terms of the order of
(iω2)3ε and (iω2)ε2 are obtained for the following values of coefficients in Eq. (8):

∆u(0,0)
j (x) = 0 (j = 1, 2), ∆u(0,0)

3 (x) = − P0

2G(1 − γ2)π2

√
a2 − x2

1 − x2
2,

∆u(0,1)
j (x) = − P0

12Gπ2

3 − 9γ2 + 8γ4

(1 − γ2)2
b

c

xj
a

√
a2 − x2

1 − x2
2 (j = 1, 2),

∆u(0,1)
3 (x) = 0, ∆u(0,2)

j (x) = 0 (j = 1, 2),

∆u(0,2)
3 (x) =

P0

144Gπ2

1
(1 − γ2)3

(b
c

)2 1
a2

√
a2 − x2

1 − x2
2

×
[
2(9 − 30γ2 + 41γ4 − 24γ6)a2 − (9 − 42γ2 + 73γ4 − 48γ6)(x2

1 + x2
2)

]
,

∆u(1,q)
j (x) = 0 (j = 1, 3, q = 0, 1), ∆u(1,2)

j (x) = 0 (j = 1, 2),

∆u(1,2)
3 (x) = ∓ P0b

18Gπ2

γ

1 − γ2

1
a2

√
a2 − x2

1 − x2
2 (a2 + 2(x2

1 + x2
2)), (9)

∆u(2,0)
j (x) = 0 (j = 1, 2),

∆u(2,0)
3 (x) =

P0

72Gπ2

3 − 4γ2 + 3γ4

(1 − γ2)2
(4a2 − x2

1 − x2
2)

√
a2 − x2

1 − x2
2,

∆u(2,1)
j (x) =

P0

720Gπ2

1
(1 − γ2)3

b

c

xj
a

√
a2 − x2

1 − x2
2

[
(27 − 86γ2 + 105γ4 − 28γ6 + 16γ8)a2

− (21 − 53γ2 + 55γ4 − 19γ6 + 8γ8)(x2
1 + x2

2)
]

(j = 1, 2),

∆u(2,1)
3 (x) = 0, ∆u(3,0)

j (x) = 0 (j = 1, 2),

∆u(3,0)
3 (x) =

P0a
3

90Gπ3

8 + 15γ − 40γ3 + 32γ5

(1 − γ2)2

√
a2 − x2

1 − x2
2, ∆u(3,1)

3 (x) = 0,

∆u(3,1)
j (x) =

P0a
2

270Gπ3

b

c
xj

48γ7 − 24γ5 + 25γ3 + 32γ2 + 15γ − 16
(1 − γ2)3

√
a2 − x2

1 − x2
2 (j = 1, 2).

Hereinafter, in the signs “∓” and “±”, the upper and lower signs refer to direction I and direction II, respectively.
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For a further study of dynamic displacements in the far zone, it is necessary to calculate integrals (6) with
allowance for the function of defect opening (8), (9). Using the asymptotic formulas (7) with r = x̃ · ξ and the
method of reduction of surface integrals to double integrals of the form

∫ ∫

S0

√
a2 − ξ21 − ξ22 dSξ =

2
3
πa3,

∫ ∫

S0

ξj

√
a2 − ξ21 − ξ22 dSξ = 0 (j = 1, 2),

∫ ∫

S0

ξ1ξ2

√
a2 − ξ21 − ξ22 dSξ = 0,

∫ ∫

S0

ξ2j

√
a2 − ξ21 − ξ22 dSξ =

2
15
πa5 (j = 1, 2),

∫ ∫

S0

ξ2i ξj

√
a2 − ξ21 − ξ22 dSξ = 0 (i, j = 1, 2),

∫ ∫

S0

ξ4j

√
a2 − ξ21 − ξ22 dSξ =

2
35
πa7 (j = 1, 2),

∫ ∫

S0

ξ21ξ
2
2

√
a2 − ξ21 − ξ22 dSξ =

2
105

πa7,

∫ ∫

S0

ξ3i ξj

√
a2 − ξ21 − ξ22 dSξ = 0 (i, j = 1, 2, i �= j),

for the two methods of crack entrainment into the wave field, we obtain the following approximations of the
amplitudes of scattering of waves of different modes:

FP (ϕ) = iχF∗
〈
g1 + g2 cos2 ϕ+ (g3 + g4 sin2 ϕ+ g5 cos2 ϕ)

(b
c

)2 sin2 θ

1 − k2 cos2 θ

+ i[g6 sin2 ϕ cosϕ+ (g7 + g8 cos2 ϕ)(cosϕ± 1)]
b

c

sin θ√
1 − k2 cos2 θ

χ

− (g9 + g10 sin2 ϕ+ g11 sin2 2ϕ+ g12 cos2 ϕ)χ2

− i
(
g13 + g14 cos2 ϕ+ (g15 + g16 sin2 ϕ) sin2 ϕ cosϕ

b

c

sin θ√
1 − k2 cos2 θ

)
χ3

〉
, (10)

FSV (ϕ) = iχ
F∗
γ

〈
sin 2ϕ+ h1 sin 2ϕ

(b
c

)2 sin2 θ

1 − k2 cos2 θ

+ i(h2 sinϕ cos 2ϕ+ h3 cosϕ sin 2ϕ± h4 sin 2ϕ)
b

c

sin θ√
1 − k2 cos2 θ

χ− (h5 + h6 sin2 ϕ) sin 2ϕχ2

− i
(
h7 sin 2ϕ+ (h8 + h9 sin2 ϕ) cos 2ϕ sinϕ

b

c

sin θ√
1 − k2 cos2 θ

)
χ3

〉
;

FSH(ϕ) = 0 (11)

[relation (11) is valid for both direction I and direction II]. In Eqs. (10) and (11), χ = ω2a is the normalized
wavenumber, θ is the angle between the normal to the crack surface on its contour and the Ox3 axis, which
characterizes the degree of crack curvature (see Fig. 1), cos2 θ = (1 − (a/c)2)/(1 − k2(a/c)2), k2 = 1 − (b/c)2,
F∗ = P0a

2γ/(3Gπ(1 − γ2)) is a normalization quantity proportional to the crack-base area, and

g1 = 2γ2 − 1, g2 = −2γ2, g3 =
γ2(1 − 2γ2)(3 − 6γ2 + 2γ4)

15(1 − γ2)2
,

g4 = −γ
2(3 − 9γ2 + 8γ4)

15(1 − γ2)
, g5 =

2γ2(3 − 9γ2 + 11γ4 − 6γ6)
15(1 − γ2)2

, g6 =
γ3(9 − 15γ2 + 8γ4)

60(1 − γ2)
,
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Fig. 2. Direction diagrams of the scattered field produced by a planar crack with θ = 0 (a) and by
a curved spheroidal crack with θ = 40◦ (b): curves 1–4 and 1′–4′ show the characteristics of the
longitudinal and transverse reflected waves, respectively, for χ = 0.2 (1 and 1′) 0.5 (2 and 2′), 0.9
(3 and 3′), and 1.1 (4 and 4′); the solid and dashed curves refer to propagation of the generating
wave in direction I and direction II, respectively.
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Fig. 3. Direction diagrams of the scattered field produced by a crack for the wave incident in direc-
tion I for χ = 0.5 (a) and 1.1 (b); curves 1–3 and 1′–3′ show the characteristics of the longitudinal
and transverse reflected waves, respectively; planar crack with θ = 0 (1 and 1′); spherical crack
with θ = 30◦ (2 and 2′); spheroidal crack with θ = 40◦ (3 and 3′).
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g7 = −γ(1 − 2γ2)
5

, g8 = −2γ3

5
, g9 =

(1 − 2γ2)(3 − 4γ2 + 3γ4)
10(1 − γ2)

, g10 =
γ

2
g7,

g11 =
γ

8
g8, g12 =

γ2(3 − 4γ2 + 3γ4)
5(1 − γ2)

, g13 =
(1 − 2γ2)(8 + 15γ − 40γ3 + 32γ5)

45(1 − γ2)π
,

g14 =
2γ2(8 + 15γ − 40γ3 + 32γ5)

45(1 − γ2)π
, g15 = −γ

3(165 − 414γ2 + 439γ4 − 168γ6 + 16γ8)
1260(1− γ2)2

,

g16 =
γ5(9 − 15γ2 + 8γ4)

210(1− γ2)
,

h1 = −9 − 30γ2 + 39γ4 − 20γ6

30(1 − γ2)2
, h2 =

2
γ3

g6, h3 =
1
5
, h4 = γh3,

h5 = − g9
1 − 2γ2

, h6 =
h3

2
, h7 = −8 + 15γ − 40γ3 + 32γ5

45(1 − γ2)π
,

h8 = −165 − 270γ2 + 247γ4 − 24γ6 + 16γ8

2520(1 − γ2)2
, h9 =

9 − 15γ2 + 8γ4

420(1 − γ2)
.

It should be noted that the identical distribution of the amplitudes of scattering of longitudinal and verti-
cally polarized transverse waves in the meridional planes ψ = const and also the zero amplitudes of scattering of
horizontally polarized transverse waves is caused by the symmetry of the crack surface and the generating steady
expansion–compression wave with respect to the Ox3 axis.

Analysis of Direction Diagrams of the Scattered Field. The dimensionless amplitudes F̄A(ϕ)
= |FA(ϕ)|/F∗ (A ≡ P , SV ) as functions of the angular coordinate ϕ plotted in Figs. 2 and 3 were calculated
for a spheroidal crack with a contour radius a = 0.5c for Poisson’s ratio ν = 0.3. The excentricity of the crack
surface was changed by varying the angle θ in the range from θ = 0 in the case with a planar circular crack in the
solid to θ = 40◦. The surface of the spherical crack (b = c) was determined by the value θ = 30◦. As the problem is
symmetric, each diagram shows the characteristics for both longitudinal and transverse reflected waves. It follows
from Fig. 2 that an increase in the wavenumber leads to an increase in the amplitudes of scattering of waves of both
modes. In the case of a planar crack, the wave field is symmetric about the equatorial plane, and the amplitudes
(both FP and FSV ) for directions I and II of the generating wave are equal to each other. The minimum values of
the scattering amplitudes are observed in the equatorial plane; for FSV , the minimum values are also observed for
ϕ = 0 and π at the points where FSV = 0. The maximums of the scattering amplitudes for longitudinal waves are
located on the axis determining the direction of propagation of the generating wave; the corresponding maximums
for transverse waves are located on the axes that form an angle close to 45◦ (depending on the wavenumber) with
the previous direction. The absolute maximums of these parameters are reached on the convex side of the defect
(see Fig. 1), and their values are higher in the case of diffraction of the external wave from this side. The difference
in the crack response, depending on the two wave directions considered, is more pronounced in the range of high
wavenumbers.

The data in Fig. 3 show that the amplitude of scattered waves decreases with increasing crack curvature.
The reasons is a decrease in the specific elastic energy spent by the generating wave on defect opening. These
results can be used as reference data in solving inverse problems of determining geometric parameters of the crack
from scattered field data.
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